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Abstract. Variousq-state Potts models on Bethe lattices are investigated whenq is non-integer.
Models with 0< q < 1 have been shown to be related to spin glasses as well as polymer models.
We find that such systems exhibit period doubling cascades, chaos, etc. Even in the case of
a one-dimensional system (a Bethe lattice with branching ratio equal to one) the system has
interesting behaviour when 0< q < 1 as shown by Glumac and Uzelac through looking at Lee–
Yang zeros. We study these systems from a completely different approach to that of dynamical
systems.

1. Introduction

The q-state Potts model is one of the most extensively studied models in equilibrium
statistical mechanics. For a general review of the Potts model see Wu (1982). The vast
majority of the timeq is taken to be an integer; however, this is not always the case. In
the late 1970s it was pointed out that non-integerq valued Potts models have connections
to a number of physical systems of interest, e.g. dilute spin glasses (Aharony and Pfeuty
1979) and gelation and vulcanization of branched polymers (Lubensky and Isaacson 1978).
In both cases the connection is made to non-integerq-values between 0 and 1. These
connections continue to be of interest today (Whittle 1994).

In this paper we look atq-state Potts models on a Bethe lattice. We study the systems
from a dynamical systems approach. A map is derived whose iteration is equivalent to
going from a Bethe lattice ofn shells to one of(n + 1) shells. In the past this approach
has been used forq = 2 Potts models by a number of authors (see for example Eggarter
1974, Thompson 1982) as well as generalq-state Potts models (see for example Akheyan
and Ananikian 1994, deAguiar and Rosa Jr 1992).

In previous studies ofq-state Potts models on Bethe lattices there has been little
investigation of the situation whenq takes on non-integer values. The type of behaviour is
crucially dependent on whether the branching ratio,K, of the Bethe lattice under study is
equal to one or greater than one. Our results forK greater than one are presented in section 2
along with an introduction to our notation and the Potts–Bethe map. Results forK = 1 are
presented in section 3. Note that whenK = 1 one has a one-dimensional system where
typically for finite range interactions no phase transition can occur. For 0< q < 1 we
will show that this is no longer true; phase transitions do occur. This unusual behaviour
for K = 1 and 0< q < 1 has been investigated in a very recent article in this journal
(Glumac and Uzelac 1994) from a completely different approach, that of looking at the
zeros of the partition function.
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2. Model and notation

For theq-state Potts model with pair interactions the Hamiltonian is

H = −J
∑
〈i,j〉

δ(si, sj ) − h
∑

i

δ(si, 1) (1)

wheresi = 1, 2, . . . , q, where the subscriptsi andj denote theith andj th site. The first
sum in (1) is over all nearest neighbour pairs of sites and the second sum is over all sites.
The partition functionQ is given by

Q =
∑
{s}

exp(−βH) (2)

where the sum is over all configurations, which we denote by{s}, and whereβ = 1/kT .
The single site ‘magnetization’ is given by

〈δ(si, 1)〉 = Q−1
∑
{s}

δ(si, 1) exp(βH). (3)

We are interested in〈δ(s0, 1)〉, the ‘magnetization’ of the root site of the Bethe lattice,
i.e. the site represented by the open circle in figure 1 which shows a Bethe lattice with
a branching ratio,K = 2. This root site ‘magnetization’ can be found by a dynamical
systems or recursive approach (Monroe 1991, 1992, 1994, deAguiaret al 1991, Akheyan
and Ananikian 1994). One considers building up increasingly larger systems of sites by
taking K, (n − 1)th generation trees to form thenth generation tree, as shown forn = 1,
n = 2 andn = 3 in figures 1(a), 1(b) and 1(c), respectively. In the limitn → ∞ one
has the Bethe lattice. The thermal average of the root site for thenth generation system is
given by

〈δ(s0, 1)〉n = azK
n

azK
n + (q − 1)

(4)

wherezn is found from the map

zn =
[

abzn−1 + (q − 1)

azn−1 + b + (q − 2)

]K

(5)

wherea = exp[βh], b = exp[βJ ], and z0 is the boundary condition term. Takingz0 = 1
gives the system ‘free’ boundary conditions. See Monroe (1994), deAguiaret al (1991) or
Akheyan and Ananikian (1994) for details related to the derivation of equations (4) and (5).
The behaviour of〈δ(s0, 1)〉 is governed by the behaviour of the map, equation (5). As is
typical of dynamical systems approaches we want to know when there are fixed points,
2-cycles, etc, for this rational function. As an example forq = 2, the Ising spin case,
andJ < 0, the anti-ferromagnetic case, Thompson (1982) showed that for sufficiently low
temperatures as one lowered the value ofh, with h > 0, one found that the map goes from
having a single attracting fixed point to having a stable 2-cycle at some value ofh which
we take to beh1, that is, a period doubling bifurcation. If one continues to lower the value
of h to h < 0 when one reachesh2 with h2 = −h1 the stable 2-cycle becomes unstable
and one returns to the case where there is a single attracting fixed point. Forq integer and
q > 2 Akheyan and Ananikian (1994) found a similar behaviour excepth1 6= h2.

Akheyan and Ananikian (1994) remark that only one period doubling occurs in the
anti-ferromagnetic Potts model on the Bethe lattice and that only by adding a next-nearest-
neighbour interaction in the Hamiltonian does one obtain the full bifurcation diagram with
period-three windows, chaos, etc. This, we point out, is only true if one restricts oneself
to non-negative integerq values. For systems with non-integerq values in the range
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Figure 1. Steps in the construction of the Bethe lattice withK = 2. (a) First generation
branch, (b) second generation branch, (c) third generation branch and (d) completion of the
Bethe lattice.

0 < q < 2 and with anti-ferromagnetic interactions or for systems with non-integerq

values in the range 0< q < 1 and with ferromagnetic nearest neighbour interactions one
obtains for〈δ(s0, 1)〉 versush bifurcation diagrams with the full range of characteristics
typical of bifurcation diagrams for dynamical systems including the prototypical system
z2 + c. We illustrate this for the anti-ferromagnetic case in figure 2 with several examples
of plots of〈δ(s0, 1)〉 versush and in figure 3 with several examples involving ferromagnetic
interactions.

3. 0< q < 1 and K = 1

In this section we confine our attention to one-dimensional systems. A Bethe lattice with
branching ratio equal to one is simply a one-dimensional system. In a very recent article in
this journal Glumac and Uzelac (1994) have studied the zeros of the partition function of
one-dimensionalq-state Potts models including cases whereq is non-integer. They point
out the very different behaviour of the zeros forq > 1 as compared toq < 1. For q < 1
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Figure 2. Plots of〈δ(s0, 1)〉 versush with q = 1.5, K = 2, J = −1, and in (a) kT = 1.45 and
in (b) kT = 1.00.

Figure 3. Plots of 〈δ(s0, 1)〉 versush with q = 0.5, K = 2, J = 1 and in (a) kT = 1.00, (b)
kT = 1.15 and (c) kT = 1.20.

the zeros lie on an interval of the positive realz-axis. Hence contrary to the usual statement
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that one does not have phase transitions in one-dimensional lattice spin systems, one may
have them in these systems.

We continue to use the dynamical system approach and takeK = 1. Then the map,
equation (5), is a M̈obius transformation or linear fractional transformation (Ahlfors 1966).
The dynamics of such maps is rather simple and well understood (Beardon 1991). For
specificity we begin by looking at the case ofq = 1

2. The map is

zn = abzn−1 − 1
2

azn−1 + b − 3
2

. (6)

We point out that one can find the fixed points analytically and there are two of them
because in the case ofK = 1 we are only dealing with a quadratic equation when we
requirezn = zn−1. We now restrict ourselves still further by takingkT = J = 1. For such
a map the behaviour ofz is such that fora > a1 anda < a2 there are two real-valued fixed
points, the larger (smaller) one being attracting (repelling). Fora2 < a < a1 there are two
complex-valued fixed points, both of which are indifferent or neutral fixed points. For the
latter case, as shown in Beardon (1991), one has either that thezn are dense on a circle of
the complexz-plane or they are periodic on a circle in the complexz-plane. Thus there is
a phase transition ath1 wherea1 = exp(βh1) and ath2 wherea2 = exp(βh2). The special
pointsa1 anda2 are easily calculated as this is when the two fixed points are equal to each
other. Our results confirm those of Glumac and Uzelac (1994) using this very different
approach. They find using their notation that the zeros of the partition function lie on an
interval of the realz-axis whenz− 6 z 6 z+. Their z− andz+ are exactly oura1 anda2.

If we relax the condition thatJ = 1 then we see that for allJ > 0 there are values
a1 and a2 between which the behaviour as described above is found. In figure 4(b) we
have a plot of exp(βh) versusβJ . The cross-hatched regions indicate where one haszn

either dense on a circle in the complexz-plane or periodic on such a circle. ForJ > 0 the
cross-hatched area corresponds exactly to the area between the broken and dotted curves of
Glumac and Uzelac’s figure 2. If one hasJ < 0 then again one has a shaded region with

Figure 4. Plots of exp(βh) versusβJ where in the cross-hatched regions one haszn either
dense on a circle in the complexz-plane or periodic on such a circle and where in the non-
cross-hatched regionzn for n → ∞ goes to an attracting fixed point. In (a) q = 0.25 and in
(b) q = 0.50.
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Figure 5. Plots of exp(βh) versusβJ where in the cross-hatched regions one haszn either
dense on a circle in the complexz-plane or periodic on such a circle and where in the non-
cross-hatched regionzn for n → ∞ goes to an attracting fixed point. In (a) q = 0.75 and in
(b) q = 1.25.

the behaviour described above, only here this is not true for allJ < 0. Rather forq = 1
2

andkT = 1 we needJ < −0.6931. . .. Figures 4(a), 5(a) and 5(b) show the situation for
q = 1

4, q = 3
4, andq = 5

4, respectively. Forq > 1, as exemplified by figure 5(b), there is
no shaded area forh real and hence no phase transition occurs. One can see this by finding
the fixed points of equation (5) whenK = 1 and then finding values ofa andb such that
the two fixed points are equal. When one does this one sees that ifq > 1 the values ofa
andb are either complex or negative, both of which have no physical significance.

4. Conclusions

We have shown that it is not necessary to go to next-nearest-neighbour interactions to obtain
the full characteristics, period doubling cascades, etc, of bifurcation diagrams when one plots
〈δ(s0, 1)〉 versush. Rather, these characteristics are exhibited in plots of〈δ(s0, 1)〉 versus
h when one considers non-integerq values. This can occur even in the case of a Bethe
lattice with branching ratioK = 1 which is nothing more than a one-dimensional lattice
system. For theK = 1 case our results complement the very recent results of Glumac
and Uzelac (1994) who investigated the case of non-integerq value Potts model systems
in one dimension using the Lee–Yang zeros approach. The general period doubling scheme
accompanied by chaotic behaviour has been shown to occur in systems with frustration and
is associated with spin glass behaviour, see e.g. McKayet al (1982). Finally, it would be
remiss of us if we did not point out that a number of authors have emphasized some of the
pathologies of non-integerq-state Potts model systems, e.g. Griffiths and Gujrati (1983).
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